首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2153篇
  免费   93篇
  国内免费   789篇
化学   2700篇
晶体学   3篇
力学   10篇
综合类   13篇
数学   15篇
物理学   294篇
  2024年   1篇
  2023年   44篇
  2022年   53篇
  2021年   57篇
  2020年   51篇
  2019年   72篇
  2018年   64篇
  2017年   73篇
  2016年   83篇
  2015年   93篇
  2014年   111篇
  2013年   113篇
  2012年   140篇
  2011年   135篇
  2010年   103篇
  2009年   138篇
  2008年   135篇
  2007年   177篇
  2006年   130篇
  2005年   142篇
  2004年   129篇
  2003年   97篇
  2002年   108篇
  2001年   110篇
  2000年   95篇
  1999年   89篇
  1998年   76篇
  1997年   64篇
  1996年   58篇
  1995年   56篇
  1994年   43篇
  1993年   44篇
  1992年   35篇
  1991年   25篇
  1990年   24篇
  1989年   22篇
  1988年   18篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1971年   1篇
排序方式: 共有3035条查询结果,搜索用时 203 毫秒
91.
用简单的化学方法制备了过渡金属(TM)壳聚糖水杨醛席夫碱配合物,然后以此配合物为金属源和N源、以硝酸预处理石墨为载体,经热处理后制备了过渡金属/氮掺杂石墨催化剂TM-N-C-t(TM=Co,Ni,Cu;t=200,400,600,800,1 000℃).以此催化剂为修饰剂制备了玻碳修饰电极,并用循环伏安法(CV)和旋转圆盘电极(RDE)伏安法研究了催化剂TM-N-C-t的电化学行为和电催化氧还原(ORR)的催化性能,催化剂的组成和结构采用TG,FT-IR,XRD,XPS等技术进行了表征.研究结果表明,催化剂TM-N-C-t对ORR均显示不同程度的催化活性,其中以1 000℃热处理的钴基催化剂Co-N-C-1000的催化活性最好,其活性已接近相同条件下的商用催化剂JM 20%Pt/C,催化活性位主要为Co—N—C.根据扩散控制的不可逆反应的循环伏安行为,计算得到了TM-N-C-t催化剂电催化ORR的动力学参数,并以此提出了氧还原催化反应的机理,在活性最好的催化剂Co-N-C-1000修饰电极上,氧气以4e转移途径被还原为水.  相似文献   
92.
A simple and efficient method was developed for the synthesis of 2.2'-arylmethylene dicyclohexane-1,3- dione derivatives via the Knoevenagel-Michael cascade reactions of aromatic aldehydes and 1,3-cyclic diketones catalyzed by "Amano" lipase DF, which expands the application field of enzyme catalytic promiscuity. This protocol provides several advantages over the traditional chemical synthesis, such as simple work-up procedure, high yields Cup to 94%) and environmental friendliness.  相似文献   
93.
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer(IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density(0.67 W cm-2)and electrical efficiency(68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer(3.53×10-5kPa).IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon(S : C) ratio, gas flow pattern(co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature(1223 K–1173 K)and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode(1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4 : 1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.  相似文献   
94.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   
95.
The paper reports the development of cement clinker-supported nickel (with metal loadings of 5 wt%, 10 wt%, 15 wt% and 20 wt%) catalysts for glycerol dry (CO2) reforming reaction. XRF results showed that CaO constituted 62.0% of cement clinker. The physicochemical characterization of the catalysts revealed 32-folds increment of BET surface area (SBET) with the addition of nickel metal into the cement clinker, which was also corroborated by FESEM images. Significantly, XRD results suggested different types of Ni oxides formation with Ni loading, whilst Ca3SiO5 and Ca2Al0.67Mn0.33FeO5 were the main crystallite species for pure cement clinker. Temperature-programmed reduction analysis yielded three domains of H2 reduction peaks, viz. centered at approximately 750 K referred to as type-Ⅰ peaks, another peaks at 820 K denoted as type-Ⅱ peaks and the highest reduction peaks, type-Ⅲ recorded at above 1000 K. 20 wt% Ni was found to be the best loading with the highest XG and H2 yield, whilst the lowest methanation activity. Syngas with lower H2/CO ratios (0.6 to 1.5) were readily produced from glycerol dry reforming at CO2-to-Glycerol feed ratio (CGR) of unity. Nonetheless, carbon deposit comprised of whisker type (Cv) and graphitic-like type (Cc) species were found to be in majority on 20 wt%Ni/CC catalysts.  相似文献   
96.
《天然气化学杂志》2014,(6):795-800
Catalytic performances of the CO2 reforming of toluene on Co/MgO catalysts with different cobalt loadings were evaluated in a fluidized-bed reactor. The results showed that the conversion of toluene and the stability of Co/MgO increased, but the apparent reaction rate decreased at the initial stage with increasing the amount of metallic Co formed from the reduction of Co/MgO catalysts at 700 ~C. The deactivation of Co/MgO catalysts was mainly resulted from that a part of the metallic Co was oxidized by CO2 and could not be re-reduced by H2 at reaction temperature. Therefore, the excess metallic Co on the higher Co loading catalysts was beneficial to the catalyst stability.  相似文献   
97.
Catalytic chain transfer polymerization (CCTP) has emerged as an efficacious method to produce low-molecular weight polymers. In this paper, we reported the first controllable synthesis of nanosilica surface-grafted poly(methyl methacrylate) (PMMA) (SI-PMMA) macromonomers by using bis(aqua)bis((difluoroboryl)-dimethylglyoximato)cobalt(II) (CoBF) as a chain transfer catalyst via CCTP. In a typical run, we firstly prepared functionalized nanosilica by using 3-(trimethoxysilyl)propylmethacrylate (MPS) as the coupling agent, allowing naosilica containing unsaturated double bonds in end groups. Subsequently, SI-PMMA macromonomers were prepared by PMMA surface-grafted onto the functionalized nanosilica via CCTP. The as-prepared products were characterized by Fourier transforms infrared (FT-IR) spectrum, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transforms Raman (FT-Raman) spectrum and gel permeation chromatography (GPC). We also investigated the dependence of macromonomers on CoBF concentrations.  相似文献   
98.
The γ-selective allylation of catalytic and stoichiometric alkylzinc-cuprates have been kinetically studied. The reactivity profiles generated by allylation reactions of n-butylzinc chloride catalyzed by CuX compounds (X = I, Br, Cl, CN, SCN) and also catalyzed by n-butylzinc-copper reagents and di n-butylzinc-copper reagents were evaluated. Reactivity profiles for allylation of stoichiometric n-butylzinc-copper reagents and di n-butylzinc-copper reagents were also prepared. All CuX compounds have been screened for the preparation of Grignard reagent derived n-butylzinc-copper reagents and di n-butylzinc-copper reagents.The evaluation of the profiles indicates that the active catalyst might be RCu(X)ZnCl and also to some degree, R2CuZnCl · ZnClX, which both could favor formation of γ-product. All data supports the reductive elimination of σ-allyl Cu (III) complex formed at vinylic terminal to give γ-allylated product with a quite slow isomerization to σ-allyl Cu (III) complex formed at allylic terminal to give α-allylated product. In the allylation mechanism of zinc cuprates, the role of counter ion, ZnCl+ has been discussed.  相似文献   
99.
Uniform Ce1−xZrxO2 (x=0.2–0.8) nanocrystals with ultra-small size were synthesized through a thermolysis process, facilitated by the initial formation of precursor (hydrated (Ce,Zr)-hydroxides) at low temperature. TEM, XRD, EDAX, and Raman spectra were employed to study the formation of the solid solutions with various Ce/Zr ratios. Ultraviolet–visible (UV–vis) spectra showed that the ratios of Ce3+ to Ce4+ in both surface and bulk for the as-prepared Ce1−xZrxO2 nanocrystals increased with the zirconium content x. The well-distributed Zr and Ce in the hydrated (Ce,Zr)-hydroxides before their thermolysis became the crucial factor for the structural homogeneity of the products. In addition, this strategy was extended to the synthesis of Ce1−xGdxO1−x/2, Ce1−xSmxO1−x/2, and Ce1−xSnxO2 solid solutions. Catalytic measurements indicated that the ceria-based catalysts were active for CO oxidation at temperatures beyond 250 °C and the sequence of catalytic activity was Ce0.5Zr0.5O2>Ce0.8Zr0.2O2>Ce0.2Zr0.8O2>Ce0.5Sm0.5O1.75.  相似文献   
100.
A continuous flow reactor was operated at atmospheric pressure and feed rate of 0–1.5 kg h−1 for degradation of PE, PP and PS in presence of 1–2 wt% PVC. The degradation temperatures were between 360 and 440 °C depending on the feeding material. The influence of PVC, temperature and silica-alumina catalysts on degradation behavior and on the properties of the products was studied and discussed. Different effects were observed for binary PE/PVC, PP/PVC, PS/PVC and complex PE/PP/PS/PVC mixtures due to specific interactions between PVC and each hydrocarbon polyolefin. Silica-alumina catalysts decreased the Cl concentration in oils but it seems to generate high amounts of Cl-containing organic compounds in gases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号